3m^2+5m-3=

Simple and best practice solution for 3m^2+5m-3= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3m^2+5m-3= equation:


Simplifying
3m2 + 5m + -3 = 0

Reorder the terms:
-3 + 5m + 3m2 = 0

Solving
-3 + 5m + 3m2 = 0

Solving for variable 'm'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1 + 1.666666667m + m2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + 1.666666667m + 1 + m2 = 0 + 1

Reorder the terms:
-1 + 1 + 1.666666667m + m2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 1.666666667m + m2 = 0 + 1
1.666666667m + m2 = 0 + 1

Combine like terms: 0 + 1 = 1
1.666666667m + m2 = 1

The m term is 1.666666667m.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667m + 0.6944444447 + m2 = 1 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667m + m2 = 1 + 0.6944444447

Combine like terms: 1 + 0.6944444447 = 1.6944444447
0.6944444447 + 1.666666667m + m2 = 1.6944444447

Factor a perfect square on the left side:
(m + 0.8333333335)(m + 0.8333333335) = 1.6944444447

Calculate the square root of the right side: 1.301708279

Break this problem into two subproblems by setting 
(m + 0.8333333335) equal to 1.301708279 and -1.301708279.

Subproblem 1

m + 0.8333333335 = 1.301708279 Simplifying m + 0.8333333335 = 1.301708279 Reorder the terms: 0.8333333335 + m = 1.301708279 Solving 0.8333333335 + m = 1.301708279 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = 1.301708279 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = 1.301708279 + -0.8333333335 m = 1.301708279 + -0.8333333335 Combine like terms: 1.301708279 + -0.8333333335 = 0.4683749455 m = 0.4683749455 Simplifying m = 0.4683749455

Subproblem 2

m + 0.8333333335 = -1.301708279 Simplifying m + 0.8333333335 = -1.301708279 Reorder the terms: 0.8333333335 + m = -1.301708279 Solving 0.8333333335 + m = -1.301708279 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = -1.301708279 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = -1.301708279 + -0.8333333335 m = -1.301708279 + -0.8333333335 Combine like terms: -1.301708279 + -0.8333333335 = -2.1350416125 m = -2.1350416125 Simplifying m = -2.1350416125

Solution

The solution to the problem is based on the solutions from the subproblems. m = {0.4683749455, -2.1350416125}

See similar equations:

| 4(u-3)-6u= | | 100-9x=5-x | | 2304=(x+16)(x-4)(4) | | Logx=0.25 | | 4x+2=3(x-6)+5 | | (y+s)(y-4)=0 | | 81=25*x | | 8x+3=5x-2 | | (2*a*b)*(2*a)= | | 10x+28=4x+94 | | 80(1.7+x)+25(1.7-x)=20 | | 0.25=k*125 | | 27=3*(q^2) | | 27=3*q^2 | | 12s^2+25-7=0 | | (x+2011)(x+2013)(x+2014)=(x+2013)(x+2014)(x+2015) | | 4x-21=51 | | 128=6*t^3 | | 128=6t^3 | | (x-4)(m+2n)+n(x-4)=0 | | 25x-60x+36=0 | | 15a=130 | | v+4.98=9.28 | | 10=6.25*x^2 | | 100=k*16 | | 2889=5 | | x^2-3x-2=o | | x^2-x-2=o | | 8-6x+9+2x+5x-3=6+3*4 | | 7.8i-8=1.3i+10 | | 2.25X=5x+17 | | 3x+6y=k |

Equations solver categories